Kamis, 25 Maret 2010

Pencetus sekaligus penguasa nisbah dan segitiga Pythagoras (580 – 475 SM)

Apabila bilangan mengatur alam semesta, Bilangan adalah kuasa yang diberikan kepada kita guna mendapatkan mahkota, untuk itu kita menguasai bilangan.
If “Number rules the universe, Number is merely our delegate to the throne, for we rule Number.”

Pythagoras

Masa kecil
Pythagoras lahir di pulau Samos, Yunani selatan sekitar 580 SM (Sebelum Masehi). Dia sering melakukan perjalanan ke Babylon, Mesir dan diperkirakan pernah sampai di India. Di Babylon, teristimewa, Pythagoras menjalin hubungan dengan ahli-ahli matematika. Setelah lama menjelajah pulau kecil, Pythagoras meninggalkan tanah kelahirannya dan pindah ke Crotona, Italia. Diperkirakan Pythagoras sudah melihat 7 keajaiban dunia (kuno), dimana salah satunya adalah kuil Hera yang terletak di kota kelahirannya. Sekarang, kuil Hera sudah runtuh dan hanya tersisa 1 pilar yang tidak jauh dari kota Pythagorian (namanya dipakai untuk mengenang putra terbaiknya). Menyeberangi selat dan beberapa mil ke utara adalah Turki, terdapat keajaiban lain yaitu: Ephesus.
Pythagoras adalah anak Mnesarchus, seorang pedagang yang berasal dari Tyre. Pada usia 18 tahun dia bertemu dengan Thales. Thales, seorang kakek tua, mengenalkan matematika kepada Pythagoras lewat

muridnya yang bernama Anaximander, namun yang diakui oleh Pythagoras sebagai guru adalah Pherekydes.
Pythagoras meninggalkan Samos pada tahun 518 SM. Tidak lama kemudian dia membuka sekolah di Croton yang menerima murid tanpa membedakan jenis kelamin. Sekolah itu menjadi sangat terkenal bahkan Pythagoras akhirnya menikah dengan salah satu muridnya. Gambaran rinci tentang Pythagoras tidak terlalu jelas. Dikatakan setelah itu, dia pergi ke Delos pada tahun 513 SM untuk merawat penolong sekaligus gurunya, Pherekydes. Pythagoras menetap di sana sampai dia meninggal pada tahun 475 SM. Sepeninggalnya, sekolah Croton berjalan terseok-seok dan banyak konflik internal, tetapi dapat terus berjalan sampai 500 SM sebelum menjadi alat politik.
Bagaimana Pythagoras menciptakan kultus terhadap angka?

Angka adalah “dewa”
Matematika dan “mitos-mitos” palsu tentang angka tidak dapat dipisahkan. Setiap angka adalah simbol atau melambangkan sesuatu yang terkait dengan metafisik adalah hal lumrah di Cina. Pythagoras pun tidak luput dari “perangkap” mitos tentang angka. Dia mengajarkan bahwa: angka satu untuk alasan, angka dua untuk opini, angka tiga untuk potensi, angka empat untuk keadilan, angka lima untuk perkawinan, angka tujuh untuk rahasia agar selalu sehat, angka delapan adalah rahasia perkawinan. Angka genap adalah wanita dan angka ganjil/gasal adalah pria. “Berkatilah kami, angka dewa,” adalah kutipan dari para pengikut Pythagoras yang memberi perlakuan khusus terhadap angka empat,”yang menciptakan dewa-dewa dan manusia, O tetraktys suci yang mengandung akar dan sumber penciptaan yang berasal dari luar manusia.
Pemujaan angka seperti layaknya tukang sihir dengan bola kristalnya barangkali – di kemudian hari, mendasari para matematikawan setelah Pythagoras. Ucapan Plato “Tuhan memahami geometri” atau kutipan Galileo “Buku terbesar tentang alam ditulis dengan simbol-simbol matematika.” Apakah itu termasuk ilmu sihir atau matematika. Yang jelas matematika lebih sulit untuk dipahami.
Hubungan matematika dengan musik dekat sekali. Tidaklah mengherankan apabila Pythagoras juga mampu menjadi seorang musisi. Mitos bilangan Pythagoras terkandung lewat “keajabiban” pentagram. Bentuk segi-lima yang makin lama makin kecil sampai takterhingga.

Pythagoras sebagai pemusik
Pythagoras juga dikenal sebagai musisi berbakat, seorang pemain lira. Penemuan musik terkait dengan matematika diawali ketika Pythagoras bermain monokord, sebuah kotak dengan bentangan tali-tali di atas salah satu sisinya. Dengan menggerakkan jari naik dan turun pada garis-garis yang sengaja dibuat, Pythagoras mengenali bahwa suara yang dihasilkan dapat diperkirakan. Ketika bagian tengah ditekan, setiap bagian atas tali dan bawah tali menghasilkan nada sama: nada yang tepat 1 oktaf * lebih tinggi dibandingkan apabila monokord tidak ditekan. Dengan membagi monokord dengan nisbah 3/4 dan 2/5, ternyata setiap nisbah menghasilkan nada yang berbeda, merdu atau fals. Baginya, harmoni musik adalah aktivitas matematika. Harmoni dari monokord adalah harmoni matematika – dan harmoni alam semesta. Pythagoras menyimpulkan bahwa nisbah tidak hanya berlaku pada musik tetapi juga pada pelbagai jenis keindahan lain. Para pengikut Pythagoras menyimpulkan bahwa nisbah dan proporsi mengendalikan keindahan musik, kecantikan fisik dan keanggunan matematika.
Contoh: sebuah tali panjang yang menghasilkan nada C, kemudian 16/15 dari panjang tali C menghasilkan notasi B; 6/5 panjang tali C menghasilkan notasi A, 4/3 panjang tali C menghasilkan notasi G; 3/2 panjang tali C menghasilkan notasi F; 8/5 panjang tali C menghasilkan notasi E; 16/9 panjang tali C menghasilkan notasi D dan 2/1 panjang tali C menghasilkan notasi C rendah.
Penelitian tentang suara mencapai puncaknya pada abad 19 setelah John Fourier mampu membuktikan bahwa semua suara – instrumental maupun vokal – dapat dijabarkan dengan matematika, yaitu jumlah fungsi-fungsi Sinus sederhana. Menurutnya, suara mempunyai 3 kategori – pitch, loudness dan quality. Penemuan Fourier ini memungkinkan ketiga kategori tersebut digambar dan dibedakan. Pitch terkait dengan frekuensi kurva, loudness terkait dengan amplitudu dan quality terkait dengan bentuk dari fungsi periodik. Lewat motto “Angka adalah dewa”, Pythagoras mampu menggalang sejumlah pengikut.


Para pengikut Pythagoras (Pythagorean)
Pythagoras barangkali dapat disebut sebagai pemikir new ages pada jamannya. Dia juga seorang orator ulung, intelektual terkenal sekaligus guru yang kharismatik. Semua itu membuat banyak orang ingin belajar darinya. Tidaklah mengherankan apabila tidak lama kemudian dia mempunyai banyak pengikut dan disusul dengan mendirikan sekolah.
Falsafah dasar yang paling penting bagi Pythagoras adalah: angka. Yunani mewarisi pemahaman tentang angka dari geometrik Mesir. Hasilnya, ahli matematika Yunani tidak dapat membedakan antara bentuk (shapes) dengan bilangan (numbers). Pada saat ini untuk membuktikan theorema matematika biasa digunakan gambar-gambar yang digambar dengan menggunakan sejenis penggaris yang terbuat dari logam atau batu dan kompas.
Nisbah-nisbah adalah kunci untuk memahami alam, Pythagorean dan matematikawan lebih modern menghabiskan banyak energi dengan menggali lebih dalam teori-teori mereka. Akhirnya mereka memilah proporsi ke dalam sepuluh kategori berbeda yang disebut dengan titik tengah harmonis (harmonic means). Salah satu dari titik tengah ini mengandung angka paling “cantik” di dunia: nisbah emas (golden ratio). Tidak ada yang istimewa dari nisbah emas ini, tetapi sesuatu yang terinspirasi oleh nisbah emas tampaknya merupakan obyek-obyek yang sangat indah. Bahkan sampai saat ini, artis dan arsitek secara intuitif mengetahui bahwa obyek-obyek yang mengandung nisbah emas nampak artistik. Dan nisbah ini mempengaruhi banyak pekerjaan pada bidang seni dan arsitektur. Parthenon, kuil Athena terbesar, dibangun dengan kaidah nisbah emas ada pada setiap aspek kontruksinya. Dalam pikiran Pythagorean, nisbah mengendalikan alam semesta dan berarti sahih bagi seluruh dunia Barat pula.

Cacat pada doktrin Pythagorean
Angka nol tidak mendapat tempat dalam kerangka kerja Pythagorean. Angka nol tidak ada atau tidak dikenal dalam kamus Yunani. Menggunakan angka nol dalam suatu nisbah tampaknya melanggar hukum alam. Suatu nisbah menjadi tidak ada artinya karena “campur tangan” angka nol. Angka nol dibagi suatu angka atau bilangan dapat menghancurkan logika. Nol membuat “lubang” pada kaidah alam semesta versi Pythagorean, untuk alasan inilah kehadiran angka nol tidak dapat ditolerir. Pythagorean juga tidak dapat memecahkan “problem” dari konsep matematika – bilangan irrasional, yang sebenarnya juga merupakan produk sampingan (by product) rumus: a² + b² = c². Konsep ini juga menyerang sudut pandang mereka, namun dengan semangat persaudaraan tetap dijaga sebagai sebuah rahasia. Rahasia ini harus tetap dijaga jangan sampai bocor atau kultus mereka hancur. Mereka tidak mengetahui bahwa bilangan irrasional adalah “bom waktu” bagi kerangka berpikir matematikawan Yunani.
Nisbah antara dua angka tidak lebih dari membandingkan dua garis dengan panjang berbeda. Anggapan dasar Pythagorean adalah segala sesuatu yang masuk akal dalam alam semesta berkaitan dengan kerapian (neatness), proporsi tanpa cacat atau rasional. Nisbah ditulis dalam bentuk a/b bilangan utuh, seperti: 1, 2 atau 17, dimana b tidak boleh sama dengan nol karena dengan itu akan menimbulkan bencana. Tidak perlu dijelaskan lagi, alam semesta tidak sesuai dengan kaidah tersebut. Banyak angka tidak dapat dinyatakan semudah itu ke dalam nisbah a/b. Kehadiran angka irrasional tidak dapat dihindari lagi adalah konsekuensi matematikawan Yunani.
Persegi panjang adalah bentuk paling sederhana dalam geometri, tetapi dibaliknya terkandung bilangan irrasional. Apabila anda membuat garis diagonal pada persegi panjang – muncul irrasional, dan kelak besarnya ditentukan oleh akar bilangan. Bilangan irrasional terjadi dan akan selalu terjadi pada semua bentuk geometri. Contoh lain, segi tiga siku-siku dengan panjang kedua sisi adalah satu, dapat dihitung panjang sisi lain – dengan rumus Pythagoras, yaitu: v2. Sangatlah sulit menyembunyikan hal ini bagi orang yang paham geometri dan nisbah.

Hippasus menyangkal
Rahasia ini akhirnya dibocorkan oleh seorang pengikut Pythagorean yang merasa bahwa dia harus mengungkapkan kebenaran. Hippasus adalah matematikawan yang menjadi murid sekaligus pengikut Pythagoras. Hippasus berasal dari Metapontan. Pengungkapan rahasia membuat dia dijatuhi hukuman mati. Cerita tentang bagaimana meninggalnya Hipassus ada berbagai versi. Beberapa mengatakan bahwa Hippasus ditenggelamkan di laut, sebagai konsekuensi menghancurkan teori indah dengan fakta-fakta menyesatkan. Sumber lain menyebutkan bahwa para pengikut Pythagoras mengubur dia hidup-hidup. Lainnya menyebutkan bahwa Hippasus, dibuang atau diasingkan dalam ruangan tertutup tanpa pernah bertemu orang lagi.
Tanpa usaha mengklarifikasikan mana yang benar, namun yang jelas pengungkapan oleh Hippasus ini mengoncangkan fondasi-fondasi doktrin Pythagoras. Dalam hal ini Pythagorean menanggap bahwa bilangan irrasional hanya sebagai suatu perkecualian. Mereka tidak dapat membuktikan bahwa bilangan irrasional mencemari pandangan mereka tentang alam semesta.

Meninggalnya Pythagoras
Para pengikut Pythagoras menyatakan bahwa guru mereka meninggal dengan cara yang unik. Beberapa dari mereka menyatakan Pythagoras mogok makan, sebagian lagi menyatakan bahwa dia mengurung dan berdiam diri. Cerita lain menyatakan bahwa konon rumahnya dibakar oleh para musuhnya (mereka yang merasa tersingkirkan oleh kehadiran Pythagoras di tempat itu). Semua pengikutnya ke luar dari rumah terbakar dan lagi ke segala penjuru untuk menyelamatkan diri. Massa yang membakar rumah itu kemudian membantai para pengikutnya (pythagorean) satu per satu. Persaudaraan sudah dihancurkan. Pythagoras sendiri berusaha melarikan diri tetapi tertangkap dan dipukuli. Dia disuruh berlari di suatu ladang, namun mengatakan bahwa dia lebih baik mati. Kemudian diambil keputusan bersama dan diputuskan: Pythagoras dihukum pancung di muka umum.
Meskipun persaudaraan sudah bubar dan pemimpinnya terbunuh, esensi ajaran Pythagoras terus bertahan sampai sekarang. Falsafah Barat banyak dipengaruhi oleh pemikiran Pythagoras – seperti halnya doktrin Aristoteles, ternyata mampu bertahan hampir 2 milenium. Angka nol dan bilangan irrasional bertentangan dengan doktrin tersebut, tetapi memberi landasan bagi para matematikawan berikutnya agar memperhatikan angka nol dan bilangan irrasional.

*) Oktaf artinya 8 yaitu: nada dari 1(do) sampai 1 (do tinggi) atau dari C sampai C lagi

Sumbangsih
Penemuan Pythagoras dalam bidang musik dan matematika tetap hidup sampai saat ini. Theorema Pythagoras tetap diajarkan di sekolah-sekolah dan digunakan untuk menghitung jarak suatu sisi segitiga. Sebelum Pythagoras belum ada pembuktian atas asumsi-asumsi. Pythagoras adalah orang pertama yang mencetuskan bahwa aksioma-aksioma, postulat-postulat perlu dijabarkan terlebih dahulu dalam mengembangkan geometri.
Manfaat ini, kelak, membuat matematika tetap dapat digunakan sebagai alat bantu dalam melakukan perhitungan terhadap pengamatan terhadap fenomena-fenomena alam, setelah melalui pengembangan dan penyempurnaan oleh para matematikawan setelah Pythagoras. Theorema Pythagoras mendasari adanya theorema Fermat (tahun 1620): xn + yn = zn yang baru dapat dibuktikan oleh Sir Andrew Wiles pada tahun 1994.

Fibonacci

“Kekuatan terbesar dalam perhitungan modern terdapat pada tiga penemuan: notasi [bilangan] Arab, bilangan berbasis sepuluh dan logaritma”
(The miracuolus powers of modern calculation are due to three inventions:the Arabic Notation, Decimal Fractions, and Logarithms)

Florian Cajori

Riwayat
Signifikansi perkembangan matematika pada abad pertengahan di Eropa seiring dengan lahirnya Leonardo dari Pisa yang lebih dikenal dengan julukan Fibonacci (artinya anak Bonaccio). Bonaccio sendiri artinya anak bodoh, tapi dia bukan orang bodoh karena jabatannya adalah seorang konsul yang wewakili Pisa. Jabatan yang dipegang ini membuat dia sering bepergian.

Bersama anaknya, Leonardo, yang selalu mengikuti ke negara mana pun dia melakukan lawatan. Fibonacci menulis buku Liber Abaci setelah terinspirasi pada kunjungannya ke Bugia, suatu kota yang sedang tumbuh di Aljazair. Ketika ayahnya bertugas di sana, seorang ahli matematika Arab memperlihatkan keajaiban sistem bilangan Hindu-Arab. Sistem yang mulai dikenal setelah jaman Perang Salib. Kalkulasi yang tidak mungkin dilakukan dengan menggunakan notasi (bilangan) Romawi. Setelah Fibonacci mengamati semua kalkulasi yang dimungkinkan oleh sistem ini, dia memutuskan untuk belajar pada matematikawan Arab yang tinggal di sekitar Mediterania. Semangat belajarnya yang sangat mengebu-gebu membuat dia melakukan perjalanan ke Mesir, Syria, Yunani, Sisilia.

Mengarang buku
Tahun 1202 dia menerbitkan buku Liber Abaci dengan menggunakan – apa yang sekarang disebut dengan aljabar, dengan menggunakan numeral Hindu-Arabik. Buku ini memberi dampak besar karena muncul dunia baru dengan angka-angka yang bisa menggantikan sistem Yahudi, Yunani dan Romawi dengan angka dan huruf untuk menghitung dan kalkulasi.
Pendahuluan buku berisi dengan bagaimana menentukan jumlah digit dalam satuan numeral atau tabel penggandaan (baca: perkalian) dengan angka sepuluh, dengan angka seratus dan seterusnya. Kalkulasi dengan menggunakan seluruh angka dan pembagian, pecahan, akar, bahkan penyelesaian persamaan garis lurus (linier) dan persamaan kuadrat. Buku itu dilengkapi dengan latihan dan aplikasi sehingga menggairahkan pembacanya. Dasar pedagang, ilustrasi dalam dunia bisnis dengan angka-angka juga disajikan. Termasuk di sini adalah pembukuan bisnis (double entry), penggambaran tentang marjin keuntungan, perubahan (konversi) mata uang, konversi berat dan ukuran (kalibrasi), bahkan menyertakan penghitungan bunga. (Pada jaman itu riba, masih dilarang). Penguasa pada saat itu, Frederick, yang terpesona dengan Liber Abaci, ketika mengunjungi Pisa, memanggil Fibonacci untuk datang menghadap. Dihadapan banyak ahli dan melakukan tanya-jawab dan wawancara langsung, Fibonacci memecahkan problem aljabar dan persamaan kuadrat.

Problem kelinci
Pertemuan dengan Frederick dan pertanyaan-pertanyaan yang diajukan oleh ahli-ahli tersebut, dibukukan dan diterbitkan tidak lama kemudian. Tahun 1225 dia mengeluarkan buku Liber Quadrotorum (buku tentang Kuadrat) yang dipersembahkannya untuk Sang raja. Dalam buku itu tercantum problem yang mampu mengusik “akal sehat” matematikawan yaitu tentang problem kelinci beranak-pinak Pertanyaan sederhana tapi diperlukan kejelian berpikir.

“Berapa pasang kelinci yang akan beranak-pinak selama satu tahun. Diawali oleh sepasang kelinci, apabila setiap bulan sepasang anak kelinci menjadi produktif pada bulan kedua”

- Akhir bulan kedua, mereka kawin dan kelinci betina I melahirkan sepasang anak kelinci beda jenis kelamin.
- Akhir bulan kedua, kelinci betina melahirkan sepasang anak baru, sehingga ada 2 pasang kelinci.
- Akhir bulan ketiga, kelinci betina I melahirkan pasangan kelinci kedua, sehingga ada 3 pasang kelinci.
- Akhir bulan keempat, kelinci betina I melahirkan sepasang anak baru dan kelinci betina II melahirkan sepasang anak kelinci, sehingga ada 5 pasang kelinci.
Akan diperoleh jawaban: 55 pasang kelinci. Bagaimana bila proses itu terus berlangsung seratus tahun? Hasilnya (contek saja): 354.224.848.179.261.915.075.
Apakah ada cara cepat untuk menghitungnya? Di sini Fibonacci memberikan rumus bilangan yang kemudian dikenal dengan nama deret Fibonacci.

Deret Fibonacci
Orang Kristen menolak angka nol; namun pedagang dalam melakukan transaksi membutuhkan angka nol. Alasan yang dipakai oleh Fibonacci adalah nol sebagai batas. Apabila diperoleh hasil negatif berarti kerugian. Orang yang mengenalkan angka nol ini ke dunia Barat adalah Leonardo dari Pisa. Meskipun ayahnya seorang Konsul sekaligus pedagang, profesi Fibonacci – tidak mau menjadi konsul, adalah seorang pedagang. Anak muda – yang lebih dikenal dengan nama Fibonacci – belajar matematika dari orang-orang Islam dan menjadi matematikawan piawai dengan cara belajar sendiri. Menemukan deret bilangan yang diberi nama seperti namanya.
Deret Fibbonacci yaitu: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 …
Pola deret di atas terbentuk dari susunan bilangan berurutan (dari kecil makin besar) yaitu merupakan penjumlahan dua bilangan sebelumnya. Angka 3, urutan keempat, adalah hasil penjumlahan 1 (urutan 2) + 2 (urutan 3); angka 5 urutan kelima, adalah hasil penjumlahan 2 (urutan 3) + 3 (urutan 4); angka 8 urutan keenam, adalah hasil penjumlahan 3 (urutan 4) + 5 (urutan 5) dan seterusnya. Deret di atas mampu menjawab problem kelinci beranak-pinak, alur bunga lily, pola dan jumlah mata nanas, jumlah kelopak dan alur spiral bunga jenis-jenis tertentu. Lewat deret Fibonacci ini dapat diketahui diketahui urutan atau alur yang akurat pada alam. Ukuran ruangan binatang berkulit lunak (moluska) yang berbentuk spiral, nautilus *; jumlah searah jarum jam atau berlawanan jarum jam ‘mata‘ nanas, jumlah kelopak bunga matahari dan ada 2 alur spiral (ke kanan 34 dan ke kiri 55) sesuai dengan deret Fibonacci.

Kaitan dengan nisbah emas
Nisbah emas sudak dikenal sejak jaman Pythagoras. Disebutkan bahwa alam tampaknya diatur oleh nisbah emas. “Kesaktian” nisbah ini mendasari arsitektur bangunan jaman dahulu, khususnya di Yunani. Bentangan pilar dan tinggi Panthenon merupakan perbandingan hasil nisbah emas.
Perhatikan hasil pembagian bilangan-bilangan pada deret Fibonacci di bawah ini.

1/1; 2/1; 3/2; 5/3; 8/5; 13/8; 21/13; 34/21; 55/34; 89/55; 144/89…

Pola apa yang terjadi? Bilangan hasil pembagian menunjukkan sesuatu yang istimewa sehingga disebut dengan seksi emas (golden section). Nama ini mirip dengan nisbah emas. Memang ada hubungan erat antara seksi emas dan nisbah emas seperti dapat dilihat pada tabel dan gambar di bawah ini.

Deret 1 2 3 5 8 13 21 34 55 89 144
Pembagi 1 1 2 3 5 8 13 21 34 55 89
Hasil 1 2 1,5 1,66 1,6 1,625 1,615 1,619 1,617 1,618 1,618

Barangkali kenyataan ini mampu menjawab pertanyaan mengapa deret Fibonacci mendekati nisbah emas.

Ambil contoh dua bilangan: a, b, a+b (deret Fibonacci) dan b/a (nisbah emas) kemudian diperbandingkan

b/a ≈ (a+b)/b
b/a (nisbah emas) ≈ a/b + 1 (seksi emas)

Substitusikan nisbah emas dengan notasi Φ (phi) untuk persamaan di atas.

Φ = 1/Φ + 1 (kalikan ruas kiri dan kanan dengan F) hasil:
Φ² – Φ – 1 = 0

Φ = (1+ √5)/2 ≈ 1,618

Revolusi Fibonacci
Topik dalam buku Liber abaci juga menjelaskan proses aritmatik, termasuk cara mencari akar bilangan. Problem-problem dalam buku ini lebih ditekankan untuk penggunaan dalam transaksi perdagangan, sistem pecahan untuk menghitung pertukaran mata uang. Fibonacci menggunakan pecahan – biasa, bilangan berbasis enam puluh (seksadesimal) dan satuan – bukan bilangan berbasis sepuluh (desimal). Penulisan 5/12 28 biasa kita kenal sebagai 28 5/12. Dia juga menempatkan bilangan pecahan berupa komponen-kompenen yang belum dijumlah. Penulisan 115/6, sebagai contoh, ditulis dengan 1/3 ½ 11. Tidak puas dengan kebingungan ini pecahan satuan ternyata lebih membingungkan. Pecahan 98/100, sebagai contoh, dipecah menjadi 1/100 1/50 1/5 ¼ ½, dan 99/100 ditulis dengan 1/25 1/5 ¼ ½.
Masih belum jelas, terlebih notasi:

1 6 2
2 9 10
yang berarti:

1 + 6 + 2
2.9.10 9.10 10

Barangkali sangatlah mengherankan, pedagang jaman kuno sudah mampu mengoperasikan sistem bilangan sebegitu rumitnya. Penulisan pecahan di atas diadopsi dari sistem bilangan Byzantium.

* Jangan salah mengartikan dengan Nautilus yang menjadi nama kapal selam pada buku karangan Jules Verne “20.000 Leagues Under the Sea”

Sumbangsih
Mengenalkan angka nol dan menghitung pola-pola alam tidak lazim sekaligus memberi dasar pada pengenalan aljabar ke dunia Barat adalah sumbangsih terbesar Fibonacci. Mampu menciptakan deret Fibonacci yang memberi jawaban atau alasan tentang pola alam seperti yang dijabarkan dalam nisbah emas. Adopsi angka nol untuk penulisan dan melakukan perhitungan di Eropa – mengubah sistem bilangan Romawi yang tidak efisien – dengan sistem bilangan Hindu-Arabik ini kelak sangat mempengaruhi perkembangan matematika di benua Eropa. Sistim bilangan pecahan Fibonacci yang rumit, kemudian disederhanakan untuk kepentingan perdagangan. Perhatikanlah perubahan harga saham-saham yang diperdagangkan di Wall Street menggunakan sistem pecahan.

Rene Descartes (1596-1650)

Rene Descartes ne adalah seorang ahli filsafat modern pertama yang besar. Dia juga penemu biologi modern, ahli fisika, dan so pasti ahli matematika dunk.

Descartes lahir di Touraine, Perancis. Dia adalah putra dari seorang ahli hukum yang lumayan tajir loh..!

Augustin Louis Cauchy

Augutin Louis Cauchy lahir di Paris. karena kesehatan yang buruk, ia disarankan oleh memusatkan perhatiannya pada matematika. Selama karirnya ia menjabat sebagai mahaguru di Ecole Polytechnique, Sorbone dan College de France. Sumbangan-sumbanagn matematisnya cemerlang dan jumlahnya sangat banyak. Produktivitasnya sangat hebat sehingga Academy Paris memilih untuk membatasi kuran makalahnya dalam majalah ilmiah untuk mengatasi keluaran Cauchy.

walaupun kalkulus diciptakan pada akhir abad ke 17, dasar-dasarnya tetap kacau dan berantakan sampai Cauchy dan rekan sebayanya (Gauss, Abel, dan Bolzano) mengadakan ketelitian baku. Jasanya begitu besar terkait dengan pemikiran beliau mengenai pemberian dasar kalkulus pada definisi yang jelas dalam konsep limit.

Gottfried Wilhelm Leibniz (1646-1716)

Gottfried Wilhelm Leibniz adalah seorang jenius universal, serang pakar dalam hukum, agama, filsafat, kesusastraan, politik, geologi, sejarah dan matematika. Beliau lahir di Leipzig, Jerman. Beliau mendaftar di Universitas Leipzig dan meraih gelar doktor di Universitas Altdorf. Leibniz mencari metode universal dengan mana ia memperoleh pengetahuan dan memahami kesatuan sifat-sifat dasarnya.

Mungkin Leibniz lah pencipta lambang matematika terbesar. nama-nama kalkulus differensial dan kalkulus integral, sama halnya seperti lambang-lambang baku dy/dx diperkenalkan oleh beliau. kalkulus berkembang lebih cepat di daratan Eropa daripada di Inggris sebagia besar disebabkan oleh perlambangannya.